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ABSTRACT

Wave rotor cycles which utilize premixed combustion processes
within the passages are examined numerically using a one-dimensional
CFD-based simulation. Internal-combustion wave rotors are envisioned

for use as pressure-gain combustors in gas turbine engines. The

simulation methodology is described, including a presentation of the

assumed governing equations for the flow and reaction in the channels,
the numerical integration method used, and the modeling of external

components such as re.circulation ducts. A number of cycle simulations
are then presented which illustrate both turbulent-deflagration and
detonation modes of combustion. Estimates of performance and rotor

wall temperatures for the various cycles are made, and the advantages

and disadvantages of each are discussed. Is==,

INTRODUCTION
The wave rotor is a device that utilizes unsteady wave motion to

exchange energy by direct work action between fluids, which may be

chemically inert or reacting. It consists of a number of channels arranged
about an axis; by rotation the ends of the channels are periodically ported

to high and low pressure manifolds (ducts) which generate and utilize
waves in the channels. Because the number of channels is large, the flow

in the ducts is practically steady, and is directed to other steady flow

components. An important feature is that as gases of a wide temperature

range flow through the rotor, the mean channel-wall temperature is lower

than the highest gas temperature. Rotational speed is low relative to

turbomachines, and the geometry usually simpler, allowing greater

strength and lower cost. For detailed descriptions of wave rotor

principles and applications see Shreeve and Mathur (1985), Naiim

(1994), and Welch et al (1995).
A wave rotor acting as a pressure exchanger can be used (together

with a conventional combustor) as a topping unit to enhance the

performance of a gas turbine engine. Welch et al (1995) have presented
simulations based on validated codes which indicate a substantial

pressure gain possible between the compressor and the turbine. Equal or
better pressure gain could also be obtained using an internal-combustion
wave rotor. In this case, combustion occurs sequentially within the wave

channels, each channel being periodically charged and discharged as it
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Figure I Intemal Combustion Wave Rotor

rotates past-properly-sized-and-timed inlet and outlet ports. Simplified
combustion and wave processes are illustrated in the wave rotor sketch

in Fig. 1. By accomplishing combustion on the rotor, the external
combustor needed in a pressure-exchanger topping cycle is eliminated.
So is the associated ducting, which might be long and unmanageably hot

in some designs.

(_ombustion Modes
The implications of internal combustion and the feasible combustion

modes are discussed in Nalim (1995). Rapid combustion is essential to

minimize residence time and rotor size. The charge may be partially or

fully premixed, and ignited by compression or other means. The feasible

modes resemble combustion in various types of internal combustion (IC)

engines. For relatively low inlet temperature (less than about 800 K for

hydrocarbon fuel), premixing and sufficient turbulence are necessary to

permit a high deflagration flame speed when ignited by a 'spark' of

residual or injected hot gas. With higher inlet temperatures, a detonation



modebecomeslikelyin premixed gas, or a non-premixed, turbulent

'diesel' combustion mode may be used. Only premixed combustion is
considered here.

Combustion Simulation Goals

This work is a step toward simulation of internal-combustion wave
rotors. Numerical modeling of combustion is a challenging research

area. There is a strong interaction between the energy release by

chemical reaction and the dynamics of fluid motion. Localized energy
release creates steep gradients in temperature and other properties which

drive transport of species, momentum, and energy. Fluid turbulence,
when present, may interact with the reaction to the extent of dominating

its rate. A wide range of timescales and lengthscales are important for

different phenomena.

In an internal-combustion wave rotor the large-amplitude

non-steady motion typical of wave rotors combines with intermittent

combustion. This imposes a heavy computational burden, especially for
multi-dimensional calculations. In the case of shock-induced reaction

and detonation, the numerical problems typically associated with shock
resolution and ensuring accurate shock-speed are compounded by the
chemical reaction. Because chemical induction time is a sensitive

function of temperature, it is a challenge to obtain accurate chemistry
near a shock when there is locally poor accuracy for energy and

temperature. In the case of turbulence-enhanced deflagration, the

numerical representation of turbulence, as well as the choice of a

combustion model which appropriately combines chemical kinetic and

turbulence effects, are both difficult issues. The computation should
properly resolve the flame thickness and the multiple timescales and

lengthscales (acoustic, diffusion, and reaction). Ideally, adaptive
gridding is needed to efficiently compute the flame propagation.

The present work attempts only the simplest, one-dimensional,

representation of combustion that is compatible with an existing wave-

rotor design and simulation code (Paxson, 1995a, Paxson & Wilson,

1995) for non-reacting flow. This uniform-grid, l-d code has already

allowed much progress in designing pressure-exchange cycles, with rapid

turnaround of computations on a single-processor workstation. It was

desirable to create a similar tool for preliminary analysis and design of

internal-combustion wave cycles. It is acknowledged that any l-d

representation of combustion processes will necessarily be rather crude,

particularly when turbulence dominates. The intended approach is to

select the model parameters to achieve simulation of a desired

combustion rate, and then estimate the required chemical and turbulence
properties.

This paper is focused on the design of premixed--charge wave cycles,

on understanding the flow dynamics relating the heat release to the

pressure waves, and on estimating overall performance and material
temperatures. The wave rotor model, governing equations for flow and
combustion in the channels, and the numerical method used are

described. A number of deflagration and detonation mode cycle

simulations are then presented. The predicted pressure gains and wall

temperatures are compared and the advantages and disadvantages of the

various cycles are discussed.

WAVE ROTOR MODEL

The present model is based on a wave rotor simulation model for

non-reacting gases which has been developed at the NASA Lewis
Research Center (Paxson, 1992, 1995a). In this model, one-dimensional

computation using a high-resolution CFD technique is performed for a

single channel, neglecting interactions between channels. Losses due to
the finite passage-opening time, leakage to the casing through the end

gaps, heat transfer to the channel walls, and boundary layer viscous

losses, are all treated by sub-models which have been validated by
experiments (Paxson & Wilson, 1995). In addition to the CFD treatment
of the flow in the channel, the cavities and the channel walls are treated

by lumped-parameter models, and the ducts are modeled as steady,
constant-area flows to obtain flow homogenization losses. The overall
pressure gain is calculated using averaged stagnation quantities

computed from the absolute frame of reference, which takes the

rotational speed into account.

Govemin_a Eauations for Channel Flow and Premixed
(_ombustion

The present model assumes a calorically perfect gas, i.e. with a
constant specific heat ratio (V). The composition of the charge at any

time and location is described solely by a reaction progress variable (z)

which changes from 1 (pure reactant) to 0 (product) as combustion
occurs, similar to Colella et al (1986). Thus there will be one additional

equation to be solved, besides the Euler equations of the non-reacting

model. A simple representation of turbulence is included in the form of
an eddy diffusivity.

The model numerically integrates the equations of motion in a

single passage as it revolves past the ports and walls that comprise the

ends of the wave rotor and establish the boundary conditions for the

governing equations in the passage. Ports are specified by their

circumferential location relative to some fixed point on the wave rotor

casing, and by a representative pressure, temperature, and reactant

fraction. With each time step the passage advances an angular distance

specified by the angular velocity. If the flow is into the passage, the
pressure and temperature are specified as stagnation values. If the flow
is out of the passage, only the port pressure is required, and it is specified
as a static value. Determination of the direction of the port flows at each

time step is discussed in Paxson (1992).

The governing equations are written in non-dimensional form as:
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The non-dimensionalization of pressure (p), density (p), and

velocity (u) has been obtained using a reference state p', p', and the

corresponding sound speed a'. The distance has been scaled by the

passage length, L. The time has been scaled using the nominal wave



transittime, 1Ja'. The heat of reaction of the reactant gas, %, is assumed
to be a constant. An alternative formulation is possible, in which the

heat of reaction is treated like an external heat source, and the chemical

energy term is not used. Although this simplifies the algebra and coding,
and the computations were checked to be equivalent, the given
formulation is more consistent with the use of conservation variables,

and can be extended to treat multiple species and real chemistry with

variable q0-
The source vector, S(.W_,x) includes contributions from the chemical

reaction rate, turbulent eddy diffusion, and viscous forces and heat

transfer at the walls. A leakage term is also added for the end gas.
Without leakage, the source term is written as

Sfmx).

Re" c_ 2 ° %ulpul°_s

e, o_ (u2. T * zq°_ ÷o' u'°'75(T T _,

_ F [ pZ(llC,Z){ 0;T<T0 [

(4)

The forms of the wall source terms for viscous stress and heat

transfer and their coefficients 02 and o 3 are based on semi-empirical

correlations. The expressions and definitions for the combustion rate and

eddy diffusion terms are discussed below.

Combustion Rate. In general, the rate of combustion at a given
location in the flow will depend on the local composition, temperature,

pressure, and turbulence properties. The mechanisms of combustion are

quite different for turbulent deflagration and for detonation of premixed

charges, and different forms of the rate equation are expected. In both

cases we represent combustion by a finite-rate, single-step reaction to

known products.

For the calculation of shock-ignited reaction and detonation, the rate

(R) is assumed to be proportional to the reactant fraction, and to have an

Arrhenius-type dependence on temperature. The rate coefficient is based

on available single-step reaction kinetic models. Usually, a large

activation energy was assumed, and ignition temperature kinetics are
used, i.e. the rate coefficient is zero below a threshold (ignition)

temperature fro), and is a constant (K0) above it. This mode is activated

by setting el--0 in Eq. (4).
For the calculation of turbulent deflagration, the turbulence model

described in the next subsection is activated. Here also, Arrhenius or

ignition-temperature kinetics are used, but the rate is assumed to be

proportional to both the reactant and the product fractions, i.e. R*,z(1-z)

by setting cl=l in the source vector, based on the suggestion of

Magnussen and Hjertager (1976). This implies that the reaction can
occur only at a propagating flame surface. The rate coefficient must be

assigned phenomenologically, based on an estimate for the reaction
timescale, which may be influenced by both chemistry and turbulence.

No special model is used for the ignition process to initiate a

deflagration. In the cases considered here, initiation takes place by
recirculation of hot combustion gas from leading channels, and by

residual hot gas in the channel. Cavity leakage was also observed to
initiate a flame in some simulations not discussed here. The one-

dimensional treatment does not capture the penetration effect of a jet of

hot gas injected through an orifice smaller than the channel width.
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Figure 2 System Layout

Turbulence Model. The effect of turbulence is approximated by
the use of an eddy diffusivity which results in diffusive fluxes of z,

energy, and momentum, proportional to their respective streamwise

gradients. In Eq. (4), Re" is a 'Reynolds number' based on the reference

state p',a', and L; e I is the eddy viscosity scaled by the molecular

viscosity. The formulation permits the use of different diffusivities for

mass, momentum, and heat, by specifying the 'turbulent Prandtl number'

Pr, and 'turbulent Schmidt number' Sc r

Clearly, such a model has little predictive value, because the role of

turbulence in flame propagation is much more complex than simply eddy
diffusion. Within the constraints of a l-d calculation, however, there is

not much scope for worthwhile sophistication. It is comforting that the

flame propagation rates calculated showed an appropriate sensitivity to

the values for the model parameters, as discussed later. A more detailed
model and multi-dimensional computations are needed to examine the

real physics of turbulent flame propagation.

SyFtem Model and Wall Temperature Calculation
The system 'layout' for wave rotor simulation is shown schematically

in Fig. 2. Boundary conditions for the end or port regions of the channel
flow are generally supplied as stagnation states. These are either

provided directly by the user, as in the case of the port leading from the

upstream compressor, or calculated by lumped-capacitance models of the
rotor housing space and the hot gas recirculation channels. The space

between the rotor and the housing, to and from which leakage occurs, is

lumped as a single cavity. The pressure difference between the cavity

and the gas in the passages, together with the specified gap between rotor

and endwalls, governs the leakage flow via a source term in the first and

last computational cell of each passage. The recirculation ducts are also

lumped together as if they were a single cavity. A stagnation pressure

loss proportional to the square of the mass flow is imposed on the flow
going through the recirculation loop. The downstream turbine could also

be modeled as a cavity and valve; however, in this study, the exhaust port
pressure was held constant based on previous calculations for topping

cycles (Paxson, 1995b). In this paper, the term 'lumped-capacitance'

implies that the kinetic energy of the flows in the components is assumed

low. Thus, they may be modeled using only mass and energy

conservation equations.



The stagnation boundary conditions supplied by the user or
component models are used by each passage in the CFD code to
determine the state of the so-called 'image' cell at the next instant of time.
The code is capable of assessing whether a given condition will lead to
inflow or outflow in a given passage. This allows robust operation of the
simulation even in some off-design conditions where a portion of the
flow in a given port may be into the rotor and a portion out of the rotor.
For outflow conditions, only the boundary pressure is used, and it is
treated as a static value. For inflow conditions some accounting is made
if the flow in the duct is not aligned with the passage (i.e. shaft work into
the system). For both inflow and outflow conditions accounting is made
at the boundaries for the effects on the flow of those passages which are
only partially opened to a port; so called finite opening effects. The
ducts leading to and from the ports are assumed loss free (isentropic);
however, a constant area mixing calculation is used in outflow ports to
account for losses due to non-uniformities in the flow.

A lumped capacitance method is also used to track the wall
temperatures, as described by Paxson (1995a), except that the channel
side walls also contribute to the heat transfer, and are assumed to be at
the same temperature as the upper and lower walls. Longitudinal
conduction in the rotor is not allowed in order to obtain the 'worst case'

wall temperatures. Thus, each slice of the rotor that is in contact with a
channel computational cell is treated as a separate 'lump'. The computed
steady-state wall temperature may be thought of as a time-averaged gas
temperature, but weighted for heat transfer.

NUMERICAL METHOD

Equation 1 is integrated numerically as follows:

- _ I At *flOAt:Lv*'li" w*i - _ln via/Ax

where the numerical flux estimate is

(5)
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and the numerical source term is

(7)

The term _r_ in Eq. (5) refers to the flux-limited dissipation based
on the approximate Riemann solver of Roe (1986) for Eq. (1) without a
source vector. The matrix [A] is the Jacobian of the flux vector F. The
superscript n indicates the discrete temporal index nat, and the subscript
i indicates the spatial index lax. This scheme has the advantage of being
formally second order accurate in time and space when the flow is
smooth yet maintaining the high resolution of Roe's method in the
vicinity of shock waves. Furthermore, as the source strength approaches
zero, the scheme becomes monotonic, which is physically correct.

There are additional requirements on the numerical scheme to
preserve the physical meaning of z, which are not inherent in the
governing equations: z should remain in the range from 0 to 1, and the
combustion source term for the rate of change of z in Eq. (4) should be
negative or zero. These are usually satisfied by the use of physically-
meaningful initial and boundary conditions, well-behaved source term
discretization, and a stable numerical scheme with monotonic source-free
behavior. A simple first-order stiffness scheme was created for the

combustion source term, by dividing it by a factor (l+K0at), to ensure
positivity of z. In practice, this was found unnecessary becans¢ the time
step for stability of the Riemann solution was always much smaller than
the reaction timescale. There are situations, unrelated to the source term,
in which numerical integration of the Riemann problem results in slightly
out-of-range z, even with a monotonic scheme (Larrouturou, 1991);
however, in the simulations to be presented, they did not arise.

Since the time constants associated with transients in the wall
temperatures and cavity properties are much larger than a complete wave
cycle, these quantities are treated as constants for each wave cycle, and
then updated using simple Euler integration (Paxson, 1995a). The actual
rotor thermal inertia and cavity volumes do not affect a steady-state
solution. Hence, the smallest values that allow stable computation are
used for rapid convergence to a periodic, zero-net-flux solution, and
steady-state wall, cavity and duct properties.

Test Cases and Grid Indeoendence
A number of reaction-wave test problems were solved to ensure that

the numerical scheme was stable and produced meaningful solutions.
These included the development of detonations in various flames of
reference. For a direct test of accuracy in computing detonation speed,
the boundary and initial conditions were set up to match a steady
Chapman-Jouguet (C-J) detonation in a perfect gas with y=l.2, and fixed
heat release, q0=30, where the reference state is that of the unburned gas.
After a brief transient, due to the fact that the prescribed initial step
profile neglects the thickness of the reaction zone, the detonation
becomes steady with the propagation speed correctly matchingthe
prescribed inflow speed. The classical Zeldovich-von Neumarm-Doring
(ZND) structureappears, with the computed von Neumann pressure spike
within 3% of the theoretical value of 30.9 (with Ax=0.005, Ko=30.0,
T0=2.0T1). While the detonation speed was independent of reaction rate
parameters and grid spacing, the pressure spike is underpredicted for
coarser grids or lower To. Computations of overdriven and underdriven
detonations also appeared to be qualitatively correct.

It is not equally straightforward to directly compare turbulent flame
computations with any data or with realistic models, as the l-d model
rate parameters have limited physical meaning. In a sense, however, the
inverse of Ko can be related to the dominant reaction timescale, which is
expected to be the turbulence timescale. It has been found
experimentally (Heywood) that highly-turbulent premixed flames, such
as those found in IC engines, have flame speed (s,) comparable to the
turbulence intensity, u', which should imply

[ r_e,
st ,, u' *, _[ -if: (8)

In computations of flame propagation in a closed tube, this
relationship was seen to be roughly preserved with a 'proportionality
constant' in the range of 1.0 to 1.2, for values of _, from 250 to 1000, and
Ko from 8 to 40, all other variables being fixed at typical values
(Re'=8.3xl06, Pr,=Sq=l.0, qo=4.0, To=l.5, ¥=1.33). The flame speeds
computed are also sensitive to changes in qoand T 0. For this same range
of variables, grid-independent solutions were achieved for values of tLx
less than 0.005, i.e. 200 cells in a channel length. Coarser grids resulted
in exaggerated, grid-dependent flame speed.

DEFLAGRATION MODE WAVE CYCLES
Several possible wave cycles using turbulent deflagration were

simulated. Because it is likely that low pressure ratio engines will use



Table I External combustion wave rotor dimensions and

design performance

Mean Rotor Radius 8.15 cm. (3.2 in.)

Rotor Length 15.24 cm (6.0 in.)

Rotor Passage Height 2.18 cm. (0.86 in.)

Rotational Speed 16800 rpm

Cycles/Revolution 2

Number of Passages 52

Mass Flow Rate =2.3 kg/s (5.0 Ibm/s)

P4/P_ (Fig. 2) 1.23

TJT I 2.21
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Figure 3 Fast-Bum Reverse-Flow Cycle

, circumferential position

this mode (Nalim, 1995), the simulations assumed a design similar to a

through-flow pressure-exchange wave rotor optimized for a small engine

with an upstream compressor pressure ratio of approximately 8 (Paxson,
1995b). The major design parameters for such a reference wave rotor,

listed in Table 1, are retained in non-dimensional form except as noted.
The reference state for non-dimensionalization of variables is the

stagnation state of the inlet to the wave rotor. In all the simulations,
Re'=8.3xl06, Prt=Sct=l.0, y=1.353. The simulations are presented as

space-time contour diagrams of gas density and reactant fraction, over a

full rotor revolution, with positive time in the upward vertical direction.

The port timings are indicated by the breaks in the side borders

representing the end plates. It is noted that the gas dynamics of a

pressure-gain wave rotor allows, in each cycle, only partial discharge of
the combustion gas to the higher-pressure exhaust port, while fresh

charge enters from the lower-pressure inlet port.

Fast-bum Reverse-Flow Cycle
In this mode, the wave rotor is designed for opposed pairs of

reverse-flow cycles, with the one inflow and one outflow port at each end
of the rotor, as illustrated in the computed wave diagram of Fig. 3.

Because of the symmetry of the port placement and the resulting gas

dynamics, there will be a resident layer of gas which moves from side to
side but does not leave the channel (unless a slight asymmetry is

deliberately introduced).
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Figure 4 Slow-Bum Through-Flow Single Cycle

Each wave cycle is required to be completed in about the same half-
revolution time as the corresponding pressure-exchange cycle. This

requires very fast combustion, and almost instant ignition. The cycle is

designed to provide hot gas recirculation from leading channels, via a
transfer passage, to create a 'torch jet' into the premixed charge. It is

assumed that the hot residual gas, heated by combustion and repeated
compression, also initiates a flame in the charge. The illustrated

simulation was obtained by setting Ko=28.0, To=l.5, and et=1000.0. The

inlet mixture is uniform, and qo is 3.42 to provide an overall temperature

ratio of 2.2. Based on Eq. (8), and examination of the simulation, the

corresponding flame speed is estimated to be 25 m/s for the candidate

engine operating at standard ambient temperature. This is at the high end

of common IC engine experience, where 10 m/s might be more typical.

A fast-bum through-flow cycle which completes combustion of the

charge in each half-revolution would be very similar to this reverse-flow

cycle in flame pattern and performance; it is not presented here.

Slow-Burn Throuah-Flow Sin ale Cycle
This design is intended for relatively slow-burning mixtures and

conditions. It has only one cycle per revolution, with the inlet and

exhaust ports on opposite ends. In the simulation illustrated in Fig. 4, the

inlet charge is stratified so that the middle one-fifth of the air has no fuel
(z----0). Ignition is by recirculated hot gas and residual burned gas, as in

the last case. Here, the flames have about thrice the time to complete
combustion, and a fifth less distance to travel. Flame temperatures are
also higher, with q0-_.275, to retain the overall temperature ratio of 2.2.
The simulation shown used Ko=6.0, "I"0=1.5, and st=500.0, which is
consistent with a flame speed about one-third that of the fast-bum
simulation, based on Eq. (8). Combustion is completed before discharge
and, at this level of diffusivity, some temperature stratification persists in
the exhaust.

The mass flow rate in this wave rotor will he half that of the

reference design, or conversely, a given flow rate will dictate double the
rotor size. This may be a crippling penalty, and a solution to the problem

is presented in the next case.
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Figure 5 Slow-Burn Through-Flow Dual Cycle

Slow-Bum Throuoh-Flow Dual Cycle
If combustion is very slow, combustion of a charge introduc_ in

one cycle may not be completed before the next discharge process. In a
two-port pressure-gain cycle, optimized for an overall temperature ratio
of 2.2, only about 60% of the gas in the channel is discharged in each
cycle. Therefore, a 'dual' through-flow cycle may be envisioned, in
which the fresh charge introduced at one end of the channel is burned

over a period of two cycles, such that all the gas discharged at the other
end has completely burned before final expansion. The throughput mass
flow rate of the reference design is now recovered. The corresponding

simulation, shown in Fig. 5, used Ko=10.0, To=l.5, and e,--500.0. Eq. (8)

implies flame speed about two-fifths that of the fast-burn case, which is
roughly consistent with the relative combustion durations of the two
cases, if it is noted that combustion is slowed during the low pressure

period. In this case, recirculation loops are provided at both ends to

ensure quick ignition and complete combustion.

DETONATION MODE WAVE CYCLES

The detonation mode is likely to be used for high pressure ratio
engines with inlet temperature close to the autoignition temperature for
the fuel used. For the purpose of this paper, however, most of the design
parameters of the reference small-engine wave-rotor (Table 1) are
retained in non-dimensional form. We also keep Re'=8.3xl0 _,

Pr_=Sct=1.0, _,=1.353. The throughput mass flow rate is approximately

doubled relative to the reference design by doubling the number of cycles

per revolution (to four) to take advantage of the rapidity of detonative
combustion. The rotor speed is adjusted slightly to match the strong
combustion-driven waves. The contour diagrams in this section cover

only half a revolution, and temperature is shown instead of density
because detonation involves only a slight change (increase) in density.

Throuah-Flow Cycle
The through-flow cycle presented in Fig. 6 has a stratified inlet

charge, with no fuel in the first one-fifths of the port duration to avoid the

possibility of flashback or premature ignition of the nearly-detonable
charge. This buffers the fuel from the residual hot gas in the channel. To
compensate and maintain the overall temperature ratio at about 2.2, the

simulation uses qo=3.785. The reaction rate used is Ko=10.0, with the
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Figure 6 Through-Flow Detonation-Mode Cycle

ignition temperature at To=l.2. A low level of turbulence is assumed,
with _,=i00.0. At this level of diffusivity, the temperature stratification

due to the buffer layer persists in the exhaust.
The detonation is initiated by coalescing compression waves

generated by closing the exhaust port while there is still significant flow

velocity. The inlet port is closed just before the detonation wave arrives,

and the exhaust port is designed to open at the time that the reflected
detonation-generated wave reaches the opposite end, based on
preliminary computations. This requires the rotor speed to be about 6%

slower than the reference design, with 4 cycles per revolution. When a

converged solution was obtained, however, it was found that the
detonation wave timing had changed somewhat.

Reverae-Flow Ovcle

The reverse-flow cycle of Fig. 7 also has a stratified inlet charge,
but with fuel concentrated in the middle three-fifths of the port. While

the leading buffer layer prevents preAgnition as before, the trailing buffer
layer is used to attempt to ensure that combustion is completed within the
channel, and no unburned fuel reaches the exhaust port. This allows a

finite land between the inlet and exhaust ports without weakening the

detonation. The ideal timing is to open the exhaust immediately when
the detonation-generated wave reaches the end wall, and the rotor speed
in the simulation is adjusted to be about 12% faster than the reference

design, to match the estimated timing. In practice, the time of initiation
of the detonation varies from cycle to cycle, as seen in Fig. 7.

Frequently, the detonation is late, and runs into the exhaust expansion,
resulting in performance loss, or incomplete combustion, despite the
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Figure 7 Reverse-Flow Detonation-Mode Cycle

buffer zone.
Another drawback of the reverse-flow cycle is that the residual gas

which never leaves the channel becomes very hot due to repeated

traversal by strong shock waves, resulting in increasing expansion of this

gas and reduced room for fresh charge. In practice, the temperature of

this gas will be limited by loss of heat to the wails (if cooled) and axial

diffusion in the gas. It was found that convergence of this solution to the

approximate steady state of Fig. 7 required an eddy diffusivity of

c,=1000.0, with Ko=20.0, To=l.2, qo=5.0.
Precise and repeatable timing of detonation initiation is difficult to

ensure in any detonation mode. The sensitivity to charge conditions may

be partly because of the ignition-temperature kinetics used in the

simulations, but will exist to some extent even with more realistic

chemistry. Delayed initiation is less of a concern for the through-flow

cycle, where there is adequate time for burn-up of the fuel. If the exhaust

opening is timed without regard for the detonation-generated wave, a

poor exhaust velocity profile and strong unsteadiness or non-uniformities
in the outflow may result. Delayed exhaust opening, timed for later

reflections of the wave, would throw away the fast-burn advantage of

detonation, and increase the wall heat load and leakage.

COMPARISON OF PERFORMANCE AND WALL
TEMPERATURES

For all three cases of deflagration cycles, the pressure gain

(averaged exhaust flow pressure over inlet pressure) was 1.20 + 0.05.

The slow-burn 'single' cycle has a leakage coefficient set to half that of

the other two to compensate for the increased time at high pressure, since
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Figure 8 Deflagration Mode Wall Temperatures

it is not intended to examine the absolute effect of leakage here. It seems
remarkable that the slow-bum 'dual' cycle suffers very little from the fact

that some combustion may occur at low pressure, when it is

thermodynamically unfavorable for pressure gain. In the combustion

model used, the rate of reaction is slowed during that time, as would be

expected in reality. The pressure gain computed for the through-flow

detonation cycle is 1.22. Pressure gain for the reverse flow detonation

cycle is not reported because an acceptably steady solution with well-

timed and complete combustion was not achieved.

For comparison, the equivalent through-flow pressure-exchanger
wave rotor of Paxson (1995b) has a computed pressure gain of 1.23. It

should be noted that no attempts were made to optimize any of the cycles

for geometry, rotor speed, wave timings relative to port timings (except
detonation, without success), correctness of duct angles for the velocity

profiles, etc. The port durations for the hot gas recirculation loops are

made greater than the channel width, due to the present limitation of the
code for opening/closing calculations. This results in excessive

recirculation flow (sometimes 20% of net flow), which may affect

performance adversely. The waves generated by these ports also appear

sometimes to cause strong non-uniformity in the exhaust. With good

optimization of the cycles, improved performance is expected.

The steady-state wall temperature profiles of the simulations differ
significantly, as shown in Figs. 8 and 9. Recall that longitudinal

conduction in the wall is absent in these computations. The mean wail

temperature is indicated by a horizontal bar for each case. This is an

indicator of the rotor temperature when its conductivity is high. It may

differ slightly from the temperature computed if a un/form wall

temperature was assumed (infinite conductivity), since local heat transfer

depends on the local temperature difference.

Converting the deflagration mode curves of Fig. 8 to absolute

temperatures, assuming a turbine inlet temperature (TIT) of 1300 K, the

peak wall temperature for the through-flow dual cycle is roughly equal
to this TIT. For the reverse flow and through-flow single cycles, the peak

wall temperatures are respectively about 110 K and 190 K higher than

the TIT. The mean wall temperature for the through-flow dual cycle is

250 K lower than TIT, whereas the mean temperature for the other two

cycles are about equal, both 70 K below TIT.

For the detonative cycles (Fig. 9), conversion of temperature to

absolute values based on same TIT and temperature ratio assumes a

detonable fuel-air mixture at low inlet temperature. The through-flow

cycle has a peak wall temperature close to TIT and a mean temperature
170 K below TIT. This is much cooler than the through-flow

deflagrative single cycle, due to the relatively short time at high

temperature, and the passage of the cold buffer layer. There are two



curves for the reverse-flow cycle, one for a simulation with et=lO00.O

and the other with et=100.0. These are intended only for a relative

comparison, since the solutions were not sufficiently well converged for
quantitative comparison. It is also noted that the heat transfer model
validated for flow in channels may not be as accurate for flows involving
detonations which have structure and transverse oscillations that may

substantially enhance heat transfer.

CONCLUDING REMARKS

A computational model for flow and premixed combustion in wave
rotors has been developed which allows rapid simulation of deflagrative
and detonative combustion mode wave cycles. The one-dimensional
treatment of channel flow and combustion is coupled with validated

models for loss mechanisms and external component interaction effects
to provide realistic estimates of wave rotor performance and

temperatures. The example simulations demonstrate that useful wave
rotor cycles can be designed which can utilize a great range of

combustion rates, depending on the fuel chemistry and turbulence

properties provided. The highest throughput mass flow rates for a given

rotor size can be achieved with detonative mode cycles. However, the

sensitivity of this mode to port timing and boundary conditions is a

significant issue. The through-flow detonative cycle is relatively well-
behaved.

This exercise calls attention to the possibility that combustion within
a wave rotor may have an inherent potential for instability, as the wave
dynamics and combustion rates become closely coupled. Because
combustion is naturally autocatalytic, perturbations which reduce the

combustion rates may rapidly degenerate to a flame-out state. This may
be the most significant drawback relative to an external-combustion

pressure-exchange wave rotor. The use of hot gas recirculation for
ignition of defiagration would seem to only add to the dependence on
positive feedback. Nevertheless, the deflagration simulations appeared
to be quite stable compared to the autoignited detonations. Further
exploration of the sensitivity and stability issues for different combustion
rate formulations and parameters is necessary.

Very high flame speeds will be needed for reverse- or through-flow

defiagration mode cycles which attempt to provide the same throughput
mass flow rates as an equivalent equal-size pressure exchanger using an

external combustor. Instead, it is possible to design a through-flow cycle
which accommodates relatively slow flames, simply by allowing

combustion of the charge to continue for the duration of two cycles.
Since pressure-gain wave-rotor cycles always have incomplete purging,
there is the oppommity for each particle of charge to complete
combustion before expansion to exhaust. Injection of recirculated hot
gas can be provided at both ends to ensure early ignition and complete
combustion. In effect, this results in four flame sites during the confined

pressure-rise combustion periods, while the naturally-reduced reaction
rates during the low-pressure periods helps to preserve the wave-rotor
thermodynamic benefit.

An additional benefit of the slow-bum through-flow dual cycle is

that it allows almost the full length of the channel to come in contact with

fresh cold gas, resulting in a very favorable wall temperature profile. It
may be possible to extend the 'dual' cycle idea to 'multi' cycles, where
combustion of each charge continues for more than two cycles, if the

exhaust expansion is weaker and a smaller fraction of combusted gas is

exhausted per cycle. Throughput and pressure gain will be affected, and

the optimal design will depend on the design wave-rotor temperature
ratio.

It is evident from the above discussion that there are many design

possibilities for internal combustion wave rotor cycles. The development

of the simulation code described here opens the door to further
examination of such concepts.
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